Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane.

نویسندگان

  • Joost J F P Luiken
  • David J Dyck
  • Xiao-Xia Han
  • Narendra N Tandon
  • Yoga Arumugam
  • Jan F C Glatz
  • Arend Bonen
چکیده

It is well known that muscle contraction and insulin can independently translocate GLUT-4 from an intracellular depot to the plasma membrane. Recently, we have shown that the fatty acid transporter FAT/CD36 is translocated from an intracellular depot to the plasma membrane by muscle contraction (<30 min) (Bonen et al. J Biol Chem 275: 14501-14508, 2000). In the present study, we examined whether insulin also induced the translocation of FAT/CD36 in rat skeletal muscle. In studies in perfused rat hindlimb muscles, we observed that insulin increased fatty acid uptake by +51%. Insulin increased the rate of palmitate incorporation into triacylglycerols, diacylglycerols, and phospholipids (P < 0.05) while reducing muscle palmitate oxidation (P < 0.05). Perfusing rat hindlimb muscles with insulin increased plasma membrane FAT/CD36 by +48% (P < 0.05), whereas concomitantly the intracellular FAT/CD36 depot was reduced by 68% (P < 0.05). These insulin-induced effects on FAT/CD36 translocation were inhibited by the phosphatidylinositol 3-kinase inhibitor LY-294002. Thus these studies have shown for the first time that insulin can induce the translocation of FAT/CD36 from an intracellular depot to the plasma membrane. This reveals a previously unknown level of regulation of fatty acid transport by insulin and may well have important consequences in furthering our understanding of the relation between fatty acid metabolism and insulin resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle.

We examined, in muscle of lean and obese Zucker rats, basal, insulin-induced, and contraction-induced fatty acid transporter translocation and fatty acid uptake, esterification, and oxidation. In lean rats, insulin and contraction induced the translocation of the fatty acid transporter FAT/CD36 (43 and 41%, respectively) and plasma membrane-associated fatty acid binding protein (FABPpm; 19 and ...

متن کامل

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

The Regulation of Fatty Acid Transport and Transporters in Insulin-, and Contraction- Stimulated Skeletal Muscle

THE REGULATION OF FATTY ACID TRANSPORT AND TRANSPORTERS IN INSULIN-, AND CONTRACTION-STIMULATED SKELETAL MUSCLE Swati S. Jain Advisor: University of Guelph, 2011 Professor A. Bonen The clearance of circulating glucose and long-chain fatty acids (FA) into skeletal muscle involves the translocation of glucose transporter GLUT4, fatty acid translocase (FAT/CD36), plasma membrane associated fatty a...

متن کامل

High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes.

In myocytes and adipocytes, insulin increases fatty acid translocase (FAT)/CD36 translocation to the plasma membrane (PM), enhancing fatty acid (FA) uptake. Evidence links increased hepatic FAT/CD36 protein amount and gene expression with hyperinsulinemia in animal models and patients with fatty liver, but whether insulin regulates FAT/CD36 expression, amount, distribution, and function in hepa...

متن کامل

Changes in fatty acid transport and transporters are related to the severity of insulin deficiency.

We have examined the effects of streptozotocin (STZ)-induced diabetes (moderate and severe) on fatty acid transport and fatty acid transporter (FAT/CD36) and plasma membrane-bound fatty acid binding protein (FABPpm) expression, at the mRNA and protein level, as well as their plasmalemmal localization. These studies have shown that, with STZ-induced diabetes, 1) fatty acid transport across the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 282 2  شماره 

صفحات  -

تاریخ انتشار 2002